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MINIMUM-WEIGHT DESIGN OF STATICALLY DETERMINATE
TRUSSES SUBJECT TO MULTIPLE CONSTRAINTS

J.-M. CHerN and W. PRAGER

Division of Engineering, Brown University, Providence, Rhode Island

Abstract—This paper is concerned with the minimum-weight design of a statically determinate elastic truss that
must satisfy both stress and displacement constraints under one or more systems of loads. As used in this paper,
compliance is the virtual work of specified dummy loads on the displacements that are caused by the actual loads.
In particular, when a single dummy load of unit intensity is used, the compliance is the displacement of its point of
application in the direction of the dummy load that is caused by the actual loads.

The stress constraints considered in the paper specify an upper bound for the absolute value of the axial
stress in each bar, which need not be the same for all bars.

Sections 1 and 2, respectively, treat the cases of two compliance constraints for a single state of loading and a
single compliance constraint for two alternative states of loading. In both cases, the mathematical problem is
one of convex programming. To obtain physical insight that may prove useful in the discussion of more complex
problems of structural optimization, both cases are treated analytically as far as possible before numerical methods
are invoked.

1. TWO COMPLIANCE CONSTRAINTS FOR SINGLE STATE OF LOADING

CONSIDER a statically determinate elastic truss of given layout of bars, and assume that two
compliance constraints have to be satisfied for a single system of loads. Since the truss is
determinate, the bar forces S;, §;;, S;, that the actual loads and the dummy loads for the
two compliance constraints produce in the ith bar do not depend on the choice of the cross-
sectional areas of the bars. If length, cross-sectional area, and allowable stress for the ith
bar are denoted by L;, 4; and &;, the compliance constraints may be written as

ZS,-S,-ILi/'A,-—-C, s 0, ES,-S,-ZL;/Ai—-Cz S 0, (i.l)

where Young’s modulus, which is supposed to be the same for all bars, has been absorbed
in the prescribed bounds C, and C,. The stress constraint for the ith bar is

§?/4?-6% < 0. (12)
Since the total volume of the bars is L;A;, we form the Lagrangian function
&L = ZLiAi+ 2SS Lif Ai— C )+ A(E8:SiaLif A;— C) + Zy{S?/A? — 8), (1.3)

where A, 4, and the y, are nonnegative Lagrangian multipliers. Because the products
§:8;; and §;S;, need not be positive, & is not a convex function of the cross sectional areas
A;. Note, however, that & is convex in the variables a; = 1/4;:

& = ELjou;+ A(Z8:8; Loy — Cy)+ A(ES:Sin Lt — C,) + Zy(S?a? ~ 87). (14
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The Kuhn-Tucker theorem [2] is applicable to this function and furnishes necessary and
sufficient conditions for global optimality, which are given below in terms of the cross-
sectional areas rather than their reciprocals:

1-2,8:8:1/A? — 2,881,/ A} = 2y, SE/(APLy), (1.5a)
2SS, Li/A,—C, <0 ifi, >0, (1.5b)
X8 S;LijA,—Cy, <0 ifd, >0, (1.5¢)

S?/At-6t <0 ify,>0. (1.5d)

1t will be convenient to use the following dimensionless variables, which are defined in
terms of a reference length ! and reference load intensity p, and a refergnce stress §:

Ii = Liﬂ’ a; = Ai&/p, §; = Sd/p, G; = 3‘/&’
Sin = Su/P, Si2 = Si2/P, (1.6)
¢, =CAp8l), ¢, = C,/(pdl).

In the second and third lines of (1.6), § is the unit load intensity. The optimality conditions
(1.5a)1.5d) are converted to these dimensionless variables by replacing the capitals A4,
L and § by their lower case equivalents and omitting the circumflex from &; in (1.5d).

In view of (1.5d),

a; > Isi/o; = 4;. amn

The bars of the truss may be divided into two groups according to whether g, > 4, (group
G*) or q; = d; (group G**). Note that the cross-sectional areas of the bars in groups G* and
G** are respectively governed by compliance or stress constraints. It follows from (1.5d)
and (1.5a) that

7: =0,  A;18:51 +A28:8, = af > @ for G*, (1.82)
Vi > 0, }ulsis“ +12S,-si2 < a? = ﬁ,z for G**. (I.Sb)

Optimization of the truss involves identifying the members of the two groups and determin-
ing the values of 4, and 4, for each pair of prescribed values ¢, and ¢, . In view of the second
equation (1.8a), the bars for which both s;5;, and s;s;, are nonpositive must be in group G**.
Members, however, for which at least one of these expressions is positive will be in G* or
G** according to whether A;s;s;; +4,5;5;, — 47 is positive or negative. Thus, the two groups
are completely specified when 4, and 4, are known. In the example below, we shall therefore
first use an inverse method, whose usefulness has been pointed out by Martin [3, 4].
Whereas, in the actual problem, the compliances are prescribed and the Lagrangian
multipliers are not known beforehand, this method assumes the multipliers to be known
and treats the compliances as functions of the multipliers. After the general dependence of
optimal design on compliances has been discussed in this manner, the solution of the
original design problem can be reduced to that of a nonlinear equation.

Example

The layout of the truss and the given loads are shown in Fig. 1(a). The dummy loads
P,, P, for the two compliance constraints are assumed to be downward vertical loads of
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the unit intensity p that are applied to the joints 1 and 2, respectively. Thus, C, is the product
of Young’s modulus and the downward deflection of joint 1 caused by the given loads, and

C, can be interpreted in a similar manner.
Assuming o; = 1 for all bars, we obtain Table 1.
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F1G. 1(d). Optimal truss of example in Section 1 with ¢, = 2¢,.

TABLE 1. DATA FOR EXAMPLE TRUSS

i 1 2 3 4 5 6
I 2 2 5 5 51
s ~2 =2 js 2&5 —js 2
i -2 =25 J5 0 0
52 0 0 0 JOR2 -y 1
a, 2 2 s 25 J5 2

G* and G** can be read off the figure as shown in Table 2.

respectively. With

¢y = Zsisulija;, ¢y = Isisiplifa;,

In the A,, A,-plane, the inequality in (1.8a) define a half-plane the points of which
correspond to values of 1,,4, for which bar i belongs to group G*. In Fig. 1(b), the
boundaries of these half-planes are marked by the appropriate bar numbers written on
the side of the boundary that corresponds to group G*. The boundaries divide the
A1, 42-place into six regions marked R,, R,,..., R¢. For each region, the bars of groups

Summation over the bars in groups G* and G** will be denoted by X* and X**,
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TABLE 2. GROUPS G* AND (** FOR VARIOUS REGIONS

Region R, R, R; R, Ry R¢

Barsin G* - i-3 1-4 56 4-6 -6
Bars in G** 1-6 46 56 14 1-3 -

the mapping of the 1, ;-plane onto the ¢,, ¢,-plane is defined by (1.8a) and (1.8b) as
follows:

C; = Z*s;5;lif(A15i80 +Agssi)F + E¥*sslifd;, (= 1,2) (1.10)

The &,, Z;-plane is shown in Fig. 1{c); point A’ corresponds to point 4 in the 4., 4,-plane,
and a similar notation is used for corresponding regions. Note that a region of the
Ay, A;-plane may be mapped onto a region or a line segment of the ¢,, ¢,-plane. Consider,
for example, region R,, for which Table 2 shows that bars 1, 2, 3 are in group G*, i.e. not
fully stressed. Since sy, = 555 = 53, = 0, it follows from (1.10) that in R, the quantities
é,, ¢, are independent of 1,. Thus, any point in this region may be replaced by, say, its
projection on AB, and instead of considering the region ABG, we may consider the line
AB, which is mapped into A'B’ in Fig. I(c). The fact that 1, may be taken as zero in region
R, indicates that the second compliance constraint is not relevant in R,. Similarly, in
region R, with bars 5, 6, in G* and s5; = sg, = 0, the quantities ¢,, ¢, depend only on 4,.
Finally, in R; with no bar in G*, the quantities ¢,, ¢, are independent of both 4, and 4,.
In Fig. 1(c), the regions R;, R, and R, are mapped into the line segments R}, R and the
point R. Note that the semi-infinite positive axes in the i,, A,-plane are mapped into the
lines 0'B'C’ and O'E'F’ of the ¢, , C,-plane.

Using ¢, ¢,-scales and -axes that are identical with the scales and axes adopted for
¢,,¢,, let a pair of prescribed values ¢, ¢, of upper bounds on compliances be represented
by the point @', and let the actual compliances of the optimal truss be represented by the
point {’ which must be in one of the six regions R;, R,, ..., R¢. In view of (1.5b, ¢), if 0’ is
on the line C'B'Y, we have ¢, = ¢, ¢, < ¢, since 4; > 0, 4, = 0. Accordingly, for @’ that
is just above the line C'B'0’, the corresponding Q' is the vertical projection of Q' on the line
C'B0'; in Fig. 1(c), Q; corresponds to Q. Similarly, since 4, =0, 4, > 0 and ¢, < ¢,,
¢, = ¢, if @' is on the line F'E'(Y, we conclude that for a Q' just to the right of the line F'E'0/,
the corresponding Q' is the horizontal projection of O’ on the line F'E'0". Thus, Q5 in Fig. 1(c)
corresponds to Q5. The point R with i; = 4, = 0and ¢, < ¢,,&, < ¢, corresponds to all
points Q' that are above and to the right of R}. Finally, for the point Q’ that is in one of
the regions R}, R, Ry but not exactly on the line segments C'B'0’ or FE'(', we have
Q' =Q'since 4, > 0,4, >0and ¢, = c,,& = ¢,; if Q' is on the line segments C'B'0’ or
F'E'0, ¢, or &, is arbitrarily close to ¢, or ¢, while A, or 4, is arbitrarily close to zero.

When the region to which the point Q' belongs is determined in this manner for the
prescribed point @', the members of the groups G* and G** are readily identified from
Table 2, and the cross-sectional areas can be calculated from (1.8) after 4, and 1, have been
found from (1.10). If ¢, < ¢, and ¢; < ¢,, we have 4; = A, = 0 and the optimal truss is
fully stressed with a; = 4, for all bars. If ¢; < &, or ¢, < &,, we have ,;, =0 or A, =0,
and the nonvanishing 4, or 4, can be directly calculated from (1.10) with j = 2 orj = 1,
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Ife, =¢,,¢c; = ¢,,thend; > 0,4, > 0and we may set 1,/A; = y and obtain the following
equations from (1.10):

VA= {E*sisidif(sisia + ysisia) H{ey — T**s;si,/di}
= {Z*s:8i0li/(5:50 + ysisi)t}/{ca — E**s;8,0i/} (1.11)

After y has been found from the second equation (1.11), 4, can readily be evaluated from
the first equation (1.11) and 4, is then given by 1, = y4,.

As a numerical example, we treat the case where the prescribed positive values c,, ¢,
satisfy the equation ¢, = 2¢,, which is represented by the semi-infinite line T; T in Fig.
1(c). Let T, and T [not shown in Fig. 1(c)] be the points on this line with the same abscissas
as B’ and (' respectively. The ¢, , ¢,-values of the corresponding optimal trusses are on the
line segments T, T, T, T3, T3B' and B'0’ which are respectively in the regions R, R3, R}
with 2, = 0, and R),. After the members of groups G* and G** have been determined from
Table 2, the 4,, A,-values for given ¢, are calculated from (1.10) or (1.11) [line segments
T, T, T,T;, T;B and BA in Fig. 1(b)]. We note that for the c,, c,-values on the line segment
T T of Fig. 1(c), we have no bar in G** and y = 0-5799 as calculated from the second
equation (1.11). Accordingly, the 4,, A,-values are on the line segment T, T, of Fig. 1(b). The
fact that 4, = 2 at T, yields ¢, = 10-352 at T;. For the line segment T,T%, Tables 1, 2
and the first equation (1.11) with ¢, = 2¢, show that A, = 3-449 independently of c,.
In Fig. 1(b), the corresponding A, , A,-values thus are on the vertical line T, T;. The fact that
y = 0 at T; furnishes ¢, = 10-807 at T%. These optimal designs are indicated in Fig. 1(d)
in dependence on ¢, . In addition, the total volume » = Zg;/; is also shown in this figure.
We note that ¢, =c¢; for 0 <c¢; <18, ¢ =18 for ¢; > 18, ¢; =&, = ¢{/2 for
0 < ¢; < 10-807 and ¢, = 6 for ¢; > 10-807.

2. ONE COMPLIANCE CONSTRAINT FOR TWO ALTERNATIVE STATES OF
LOADING

Consider again a statically determinate elastic truss of given layout of bars, and assume
that a compliance constraint associated with a given set of dummy loads has to be satisfied
for each of two alternative systems of loads. As in Section 1, the bar forces S;;, Siz, S;
that the actual and dummy loads cause in the ith bar are independent of the choice of the
cross-section areas of bars. If we again denote the length, cross-sectional area and allowable
stress for the ith bar by L;, A; and &;, the compliance constraints may be written as

£8,,5:.Li/4;—Cy <0, IS8;,8:Li/4i—C, <0, @1
and the stress-constraints for the ith bar as
S%/A? -8 <0, S%4/A? -6 < 0. 2.2)

In (2.1), Young’s modulus has been absorbed in the prescribed bounds C, and C,.
If we introduce the nonnegative Lagrangian multipliers 4,, 4,, 7;,, ;2 and form the
Lagrangian function

L = LA+ A(Z8;,SiLi/A;— C1)+ 25(ZS:;,8,Li/ A, — C))
+Zy1(SA/A? — 8)+ Zy,5(Sh/ AP — 67), 2.3
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we may follow a procedure similar to that of Section 1 and obtain the optimality conditions:

1-4,8:18i/A} — 22828/ A} = 2(y:1ST +7:2SH)(4} L) (24a)
IS, S;.L/A;—C, <0 ifiy 50, (2.4b)
X8;,S,Li/A;—C, <0 ifAd; 50, (24¢)
S3/A2—-62 <0 ify, 50, (2.4d)
ShIA} -6 <0 ify, 0. (2.4e)

Let the representative load intensity of the first loading system be denoted by p, and
that of the second loading system by p, = rp,. In the following we shall use the dimension-
less variables:

I = L/l a; = Ab/p;, i1 = Sit/P1> Siz = Sip/rpy)s o; = 6,/8, 2.5)
§; = Si/l—” ¢, = C,/(pél), ¢, = Cy/(rpdl),

where [, p,, & are reference length, reference load intensity and reference stress, and p
denotes the unit load intensity. We may then, as in Section 1, convert the optimality
conditions (2.4a)}+(2.4e) to these dimensionless variables.

In view of (2.4d, ¢),

a; = max{|s;,|,Hs;,l|}/o; = 4;. (2.6)

The bars of the truss may again be divided into two groups according to whether a; > 4;
(group G*) or q; = d; (group G**). It then follows from (2.4d, €) and (2.4a) that

Yip =Yz =0, Aysii8i+Az8:55; = af > af  for G*, (2.7a)
Vi1 > 0 or Vi2 > 0, llsil§i+j'25i2§i < a,-2 = ﬁ,z for G**, (2.7b)

Optimization of the truss involves identifying the members of the two groups and determin-
ing the values of 4, and 4, for each pair of prescribed values ¢, and c,. In view of the second
equation (2.7a), the bars for which both s;,3; and s,,5; are negative must be in groups G**.
Members, however, for which at least one of these expressions is positive will be in G* or
G** according to whether 4,s;,3;+ 4,5,,8; — 42 is positive or negative. Thus, the groups are
completely specified when 4, and 4, are known. The procedure of furnishing an optimal
design is exactly the same as in Section 1 as shown in the example below.

Example

The layout of the truss and the given alternative loading systems of load intensity p, , p,
are shown in Fig. 2(a). The dummy load for compliance constraints is assumed to be a
downward vertical load of unit intensity p that is applied to joint 1. Thus, C, and C, are
respectively the products of Young’s modulus and the downward deflections of joint 1
caused by the first and the second loading systems.

Assuming ; = 1 for all bars and p, = p,, we obtain Table 3.

In the 4,, 4,-plane, the inequality in (2.7a) defines a half-plane the points of which corre-
spond to values of 4, 4, for which bar i belongs to group G*. In Fig. 2(b), the boundaries of
these half-planes are marked by the appropriate bar numbers written on the side of the
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TABLE 3. DATA POR EXAMPLE TRUSS

i 1 2 3 4 5 6
I 2 2 Js s Y51
St -2 -2 Y5 2J5 —y5 2
sz =S =S 2 72 =52 0
5 -2 -2 J5 s 0 0
4, J5 NN N s 2

boundaries that correspond to group G*; the bars 5, 6 with s5;,45; = §;,5; = 0 can never be
in group G*. The boundaries divide the 1,,4,-plane into four regions marked by
Ry, R,..., R,. For each region, the bars of groups G* and G** can be read off the figure as
shown in Table 4.

TABLE 4. GROUPS G* AND G** FOR VARIOUS REGIONS

Region R, R, R; R,
Barsin G* - 3 4 1-4
Barsin G** 1-6 1,2,4-6 1-3,5,6 5,6

Summation over the bars in group G* and G** will again be denoted by Z* and T**,
respectively. With

¢y = IspSilifa;, € = ZspSilifa;, (2.8)
the mapping of the 1., 4,-plane into the ¢,, ¢,-plane is defined by
¢; = T*sySilif(A15uSi+ Asi S + Z¥*ssilifdi,  (j=1,2). 29)

The &,, é,-plane is shown in Fig. 2(c) where notations similar to those of the example in
Section 1 are used ; for instance, point A’ and point R correspond to point 4 and region R,,
respectively. The semi-infinite positive 4,-axis in the 4,, 4,-plane is mapped onto the line
segments O'B'C’'D’ and the 4,-axis onto O'F'G’. [Note that D' and G’ are shown on insert of
Fig. 2(c).] For the region R, with only bar 3 in G*, from (2.9) we have

& = K +5J0/M 2ol & = Ko +5/(5)/(5; +2/(9)3)*

where K, and K, denote the constants of the second summations in (2.9). Accordingly,
the mapping depends only on the values of 54, +2,/(5)4,. For a point M on the line seg-
ment AB of the 4, , ,-plane with the abscissa 1, all points of the line EM with the equa-
tion 51, +2,/(5)4, = 54{" are mapped onto the same point in the &,,&,-plane as the
point M. Accordingly, the region R, is mapped onto the line segment A'B’ in the ¢, , ¢,-plane.

Let the prescribed values ¢, ¢, be represented again by a point (' in the ¢,, ¢,-plane,
and the ¢, , &,-values of the corresponding optimal truss by a point '. Following the similar
argument as in the example of Section 1, we conclude that @' = Q' if Q' is in one of the four
regions R ...,R;,. If Q' is just above the line segments D’C'B'0/, then A; > 0, 4, =0,
&, = ¢, & < ¢,, and the corresponding Q' is the vertical projection of Q' on D'C'B0';
for instance, in Fig. 2(c), 0, corresponds to Q' . Similarly, if Q' is just to the right of the line
segment G'F'0, then A, =0, A, > 0, &, < ¢y, ; = ¢, and the corresponding ' is the
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horizontal projection of Q' on G'F'0; for instance, in Fig. 2(c), O, corresponds to Q.
Finally if Q' is above and to the right of R}, then @’ = R since A, = 4, = 0and ¢, < c,,
¢y < C3.

When the region to which the point Q" belongs is indicated in this manner for prescribed
(', the members of the groups G* and G** are readily identified from Table 4. The values
A1, 47 and then the cross-sectional area a; of the optimal truss can be calculated from (2.9)
and (2.7) in exactly the same manner as in Section 1.

3. CONCLUDING REMARK

In the form in which it has been presented, the method of structural optimization of
trusses discussed above applies only to statically determinate trusses. Martin [4] has
however been successful in applying a modification of the method to statically indeterminate
beams. A similar modification for use with statically indeterminate trusses appears feasible
and will form the subject of a follow-up paper.

Acknowledgements—This work was supported by the Air Force Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio, under Contract F33615-69-C-1826. The authors are indebted to Dr. L. Berke of this
Laboratory, who drew their attention to the practical importance of the problem and suggested an approach to
its solution [1].

REFERENCES

[1] L. BerkE, An Efficient Approach To The Minimum Weight Design of Deflection Limited Structures, AFFDL
Report, TM-70-4-FDTR (1970).

[2] H. W. KunN and A. W. TUCKER, Non-Linear Programming, Proc. 2nd Berkeley Symposmm on Mathematics,
Statistics and Probability, Berkeley, California, pp. 481-492. University of California Press (1950).

[3] J. B. MARTIN, The optimal design of beams and frames with compliance constraints, Int. J. Solids Struct. 7,
63-81 (1971).

[4] J. B. MARTIN, The optimal design of elastic structures for multi-purpose loading. J. Optimization Theory
Applic. 6, 2240 (1970).

(Received 30 September 1970; revised 12 November 1970)

AGcrpakt—B pabore ofcykmaeTcst pacueT HAa MHHHMYM BECa CTATHYECKH ONpPEReIeHHOR yupyroi depmsl,
KOTOpas JO/DKHA YAOBJIETBOPATH OrallHYCHYO CBA3¢A TAK HANPAXKCHUH, kak H aedopMmanuuilt, mox BIHIHHEM
ofgHoli cHcreMw H Gonee cucTeM Harpyskd. Mcmonb3yercas B paboTe yCTYMYMBOCTH ABNAIOLIEACK
BHPTYaNbHOHM paboToit cnemudmyecknX GHKTHBHBIX HATPY30K Ha TNCPEMCIICHHAX, BHIBAHHBIX
HCHCTBUTE/ILHOM HArpy3xoi. B xauecTee NpHMEHCHHS eOHHMYHOR GUXTHBHOM marpysxu, Takas
YCTYIYHBOCTD NPEACTABIAET NEPEMEIICHHE TOYKH 6¢ NPHIOKCHHES N0 HAPABICHHIO GHKTABHOM HATPY3KH,
BbI3BAHHO ACHCTBUTENbHHIME HATPY3KaMH.
OrpanudeHus HanpsxeHHi, paccMaTpaBaeMbiec B pabore, onpeneisnoT BepxHult mpegen aGcomoTHOR
BETHYHHB! OCEBOI'0 HATIPSAXCHHA B KaXIIOM CTEPXHE, KOTOPOe He ABISCTCA OAHHAKOBLIM I BCeX CTepaXHCH.
Yactr 1 1 2, COOTBETCTBEHHO, ONPEACIMIOT CAYIAH ABYX YCTYIMYHBLIX CBA3eH Z/IA NPOCTOro COCTONHHA
HArpy3kd H OAMHADHOM YCTYmYmBOM CBA3M [ABYX QJIbTCPHATHBHBIX COCTOAHME HATpy3xm. [{is 3THX IByX
clyiaeB MaTcMaTAyecxas npobGaeMa OxXasmBacTCs OJHO# M3 3a4a4 BHUIYKNOrO NPOrPaMMHPOBAHHA.
O6a ciydas ONECHBAIOTCA aHAJTHTHYCCKH TAX AAJIEKO, KaK ITO ABIKCICH BO3MOXHHM, npexae sem Gyayr
HCTIONB30BAHE! MHCIICHHBIC PACYCTH, TTO0H B Pe3yNbTaTe NOMYYHTh Gu3nuecKkuit B3I, XKOTOPH MOXeT
OKa3aThCA NONE3HNM OpH obcyxaeuml 6oee CIOXHBIX 3a1a4¥ ONTHMANH3AUNHA KOHCTPYKIMH,



