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MINIMUM-WEIGHT DESIGN OF STATICALLY DETERMINATE
TRUSSES SUBJECT TO MULTIPLE CONSTRAINTS

J.-M. CHERN and W. PRAGBR

Division of Engineering, Brown University, Providence, Rhode Island

Abstraet-This paper isconcerned with the minimum-weight design of a statically determinate elastic truss that
must satisfy both stress and displacement constraints under one or more systems of loads. As used in this paper,
compliance is the virtual work of specified dummy loads on the displacements that are caused by the actual loads.
In particular, when a single dummy load of unit intensity is used, the compliance is the displacement of its point of
application in the direction of the dummy load that is caused by the actual loads.

The stress constraints considered in the paper specify an upper bound for the absolute value of the axial
stress in each bar, which need not be the same for all bars.

Sections I and 2, respectively, treat the cases of two compliance constraints for a single state of loading and a
single compliance constraint for two alternative states of loading. In both cases, the mathematical problem is
one ofconvex programming. To obtain physical insight that may prove useful in the discussion of more complex
problems ofstructural optimization, both cases are treated analytically as far as possible before numerical methods
are invoked.

1. TWO COMPLIANCE CONSTRAINTS FOR SINGLE STATE OF LOADING

CONSIDBR a statically determinate elastic truss of given layout of bars, and assume that two
compliance constraints have to be satisfied for a single system of loads. Since the truss is
determinate, the bar forces S" Sj1, S'2 that the actual loads and the dummy loads for the
two compliance constraints produce in the ith bar do not depend on the choice of the cross
sectional areas of the bars. If length, cross-sectional area, and allowable stress for the ith
bar are denoted by L;, A; and a" the compliance constraints may be written as

(1.1)

where Young's modulus, which is supposed to be the same for all bars, has been absorbed
in the prescribed bounds C1 and C2 • The stress constraint for the ith bar is

SNA;-a; ::;; O.

Since the total volume of the bars is :ELiA" we form the Lagrangian function

(1.2)

where At, A2 and the }'i are nonnegative Lagrangian multipliers. Because the products
S;Su and S,S'2 need not be positive, ff1 is not a convex function ofthe cross sectional areas
A;. Note, however, that ff1 is convex in the variables cx; = I/A,:

ff1 = :EL,/cx;+ Al(:ES;Sj1L;CX,- C1)+ A2(I:SiS'2L;CX,- C2)+ 'E}';(S;cx; -a;). (1.4)
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The Kuhn-Tucker theorem [2] is applicable to this function and furnishes necessary and
sufficient conditions for global optimality, which are given below in terms of the cross
sectional areas rather than their reciprocals:

1-AlSjSil/Ar-A,2SjSi2/Ar = 2YjSl/(A~Lj),

I.S jSilLi/A j -C1 ~ 0 if A,1 50,

I.SjSj2Li/Aj-C2 ~ 0 ifA.2 50,

Sl/Ar-{fr ~ 0 if Yj 5 o.

(1.5a)

(1.5b)

(1.5c)

(1.5d)

It will be convenient to use the following dimensionless variables, which are defined in
terms of a reference length I and reference load intensity p, and a referlWnce stress {f:

lj = Ldl,

Sil = Sillp,

C1 = C t/(p{fl),

Sj = Sdp, Gj = {fd{f,

(1.6)

In the second and third lines of (1.6), p is the unit load intensity. The optimality conditions
(1.5aH1.5d) are converted to these dimensionless variables by replacing the capitals A,
Land S by their lower case equivalents and omitting the circumflex from {fj in (1.5d).

In view of (1.Sd),

(1.7)

The bars of the truss may be divided into two groups according to whether Qj > iij (group
G*) or aj = ii j (group G**). Note that the cross-sectional areas of the bars in groups G* and
G** are respectively governed by compliance or stress constraints. It follows from (1.5d)
and (1.5a) that

Yj = 0,

Yj > 0,

AlSjSil +A2SjSj2 = ar > iir for G*,

A,ISjSil +A2SjSj2 < ar = ar for G**.

(1.8a)

(1.8b)

Optimization of the truss involves identifying the members of the two groups and determin
ing the values of Al and A.2 for each pair of prescribed values Ct and C2. In view ofthe second
equation (1.8a), the bars for which both SjSil and SjSj2 are nonpositive must be in group G**.
Members, however, for which at least one of these expressions is positive will be in G* or
G** according to whether ).,ISjSil +).,2SjSj2 -af is positive or negative. Thus, the two groups
are completely specified when).,1 and).,2 are known. In the example below, we shall therefore
first use an inverse method, whose usefulness has been pointed out by Martin [3, 4].
Whereas, in the actual problem, the compliances are prescribed and the Lagrangian
multipliers are not known beforehand, this method assumes the multipliers to be known
and treats the compliances as functions of the multipliers. After the general dependence of
optimal design on compliances has been discussed in this manner, the solution of the
original design problem can be reduced to that of a nonlinear equation.

Example
The layout of the truss and the given loads are shown in Fig. l(a). The dummy loads

PI' P2 for the two compliance constraints are assumed to be downward vertical loads of
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FIG. l(c). c1 ' c2-plane for example of Section 1.

the unit intensity pthat are applied to the joints 1 and 2, respectively. Thus, C 1 is the product
of Young's modulus and the downward deflection ofjoint 1 caused by the given loads, and
C2 can be interpreted in a similar manner.

Assuming (1; = 1 for all bars, we obtain Table 1.
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FIG. l(d). Optimal truss of example in Section 1 with C1 = 2c2 •

TABLE 1. DATA FOR EXAMPLE TRUSS

2 3 4 5 6

Ii 2 2 ../5 ../5 ../5 I
S, -2 -2 ../5 2../5 -../5 2
Sit -2 -2 ../5 ../5 0 0
S,2 0 0 0 ../(5)/2 -../(5)/2 1
d. 2 2 ../5 2../5 ../5 2

In the ),1' ),2-plane, the inequality in (1.8a) define a half-plane the points of which
correspond to values of A. 1 ' 12 for which bar i belongs to group G*. In Fig. l(b), the
boundaries of these half-planes are marked by the appropriate bar numbers written on
the side of the boundary that corresponds to group G*. The boundaries divide the
),1' ),rplace into six regions marked R 1 , R 2 , • •• , R6 • For each region, the bars of groups
G* and G** can be read off the figure as shown in Table 2.

Summation over the bars in groups G* and G** will be denoted by 1:* and 1:**,
respectively. With

(1.9)
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TABLE 2. GROUPS G* AND G** FOR VARIOUS REGIONS

Bars in G* 1-3 1-4 5,6 4-6 1-6
Bars in G** 1-6 4-6 S,6 1-4 1-3

the mapping of the AI, Arplane onto the Cl, crplane is defined by (1.8a) and (1.8b) as
follows:

(j = 1,2). (1.10)

The Cl, crplane is shown in Fig. I(c); point A' corresponds to point A in the AI' A2-plane,
and a similar notation is used for corresponding regions. Note that a region of the
AI' Arplane may be mapped onto a region or a line segment of the C1, C2-plane. Consider,
for example, region R 2 , for which Table 2 shows that bars 1,2,3 are in group G*, i.e. not
fully stressed. Since 512 = 522 = 532 = 0, it follows from (1.10) that in R2 the quantities
Ct>C2 are independent of ..1.2 , Thus, any point in this region may be replaced by, say, its
projection on AB, and instead of considering the region ABG, we may consider the line
AB, which is mapped into A'B' in Fig. I(c). The fact that ..1.2 may be taken as zero in region
R2 indicates that the second compliance constraint is not relevant in R2 • Similarly, in
region R4 with bars 5,6, in G* and 551 = 861 = 0, the quantities Cl, C2 depend only on AI'
Finally, in R 1 with no bar in G*, the quantities Cl, C2 are independent of both ..1. 1 and ..1.2 ,

In Fig. I(c), the regions R 2 , R4 and R 1 are mapped into the line segments R'", R4and the
point R'l' Note that the semi-infinite positive axes in the AI, A2-plane are mapped into the
lines O'B'C' and O'E'F' ofthe Cl' c2-plane.

Using Cl' crscales and -axes that are identical with the scales and axes adopted for
C1 , C2, let a pair of prescribed values C1, C2 of upper bounds on compliances be represented
by the point Q', and let the actual compliances of the optimal truss be represented by the
point Q' which must be in one of the six regions R 1, R 2 , ••• , R 6 • In view of (1.5b, c), if Q' is
on the line C'B'O', we have Cl = Cl' C2 < C2 since Al > 0, ..1.2 = O. Accordingly, for Q' that
is just above the line C'B'O', the corresponding Q' is the vertical projection of Q' on the line
C'B'O'; in Fig. l(c), Q; corresponds to Q~. Similarly, since .41 = 0, A2 > 0 and C1 < C1 ,

C2 = C2 if Q' is on the line F'E'O', we conclude that for a Q' just to the right of the line F'E'O',
the corresponding Q' is the horizontal projection of0' on the line F'E'O'. Thus, Q2 in Fig. l(c)
corresponds to Q'". The point R~ with Al = A2 = 0 and c\ < Cl, C2 < C2 corresponds to all
points Q' that are above and to the right of R;. Finally, for the point Q' that is in one of
the regions R3,Rs,R6 but not exactly on the line segments C'B'O' or F'E'O', we have
Q' == Q' since ..1.1 > 0, A2 > 0 and Cl = Cl, C2 = C2; if Q' is on the line segments C'B'O' or
F'E'O', Cl or C2 is arbitrarily close to Cl or C2 while ..1. 1 or A2 is arbitrarily close to zero.

When the region to which the point Q' belongs is determined in this manner for the
prescribed point Q', the members of the groups G* and G** are readily identified from
Table 2, and the cross-sectional areas can be calculated from (1.8) after Al and ..1.2 have been
found from (1.10). If Cl < Cl and C2 < C2' we have Al = ..1.2 = 0 and the optimal truss is
fully stressed with aj = tlj for all bars. If Cl < Cl or C2 < C2' we have Al = 0 or A2 = 0,
and the nonvanishing A2 or ..1. 1 can be directly calculated from (1.10) with j = 2 or j = 1.



936 J.-M. CHmlN and W. PRAOBil

If Cl = Cl' C2 = C2' then Al > 0, A2 > 0 and we may set A21Al = y and obtain the following
equations from (1.10):

JA1 = fE*sjsj1I;/(sjsj1 +YSjsj2)t}/{ Cl -l:**sjsj1ljlaj}

= {l:*SjSj21;/(SjSj1 + YSjsj2)t}/{ C2 -l:**Sjsi21;/ad. (1.11)

After y has been found from the second equation (1.1n Al can readily be evaluated from
the first equation (1.11) and A2 is then given by A2 = YA 1 •

As a numerical example, we treat the case where the prescribed positive values Cl' C2
satisfy the equation Cl = 2C2' which is represented by the semi-infinite line T1T6in Fig.
l(c). Let T4and Ts[not shown in Fig. l(c)] be the points on this line with the same abscissas
as B' and 0' respectively. The Cl' c2-values of the corresponding optimal trusses are on the
line segments T1T;', T;'T), T)B' and B'O' which are respectively in the regions R6,R), R)
with A2 = 0, and R;'. After the members of groups G* and G** have been determined from
Table 2, the Al' A2-values for given Cl are calculated from (1.10) or (1.11) [line segments
T1T2 , T2T3 , T3B and BA in Fig. l(b)]. We note that for the Ct> c2-values on the line segment
T1T;' of Fig. l(c), we have no bar in G** and y = 0·5799 as calculated from the second
equation (1.11). Accordingly, the A1 , A2-values are on the line segment T1 T2 ofFig.l(b). The
fact that A2 = 2 at 1;, yields C1 = 10·352 at T z. For the line segment TzT), Tables 1, 2
and the first equation (1.11) with Cl = 2C2 show that A1 = 3·449 independently of Cl'
In Fig. l(b), the corresponding A1 , A2-valUes thus are on the vertical line T2T3 • The fact that
y = 0 at 13 furnishes Cl = 10·807 at T). These optimal designs are indicated in Fig. l(d)
in dependence on Cl' In addition, the total volume v = l:ai1i is also shown in this figure.
We note that Cl = Cl for 0 < Cl :::;; 18, Cl = 18 for Cl ~ 18, C2 = C2 = ct/2 for
0< Cl :::;; 10·807 and C2 = 6 for Cl ~ 10·807.

2. ONE COMPLIANCE CONSTRAINT FOR TWO ALTERNATIVE STATES OF
LOADING

Consider again a statically determinate elastic truss of given layout of bars, and assume
that a compliance constraint associated with a given set of dummy loads has to be satisfied
for each of two alternative systems of loads. As in Section 1, the bar forces SiI' Sj2' Sj
that the actual and dummy loads cause in the ith bar are independent of the choice of the
cross-section areas of bars. Ifwe again denote the length, cross-sectional area and allowable
stress for the ith bar by Lj, Ai and fJj, the compliance constraints may be written as

l:Sj1SjL;/Aj-C1 :::;; 0, l:Si2SiL;/Aj-C2 :::;; 0, (2.1)

and the stress-constraints for the ith bar as

(2.2)

In (2.1), Young's modulus has been absorbed in the prescribed bounds C1 and C2 •

If we introduce the nonnegative Lagrangian multipliers Al' A2, yj1, Yj2 and form the
Lagrangian function

!l' = l:LjA j+ A1(l:Sj1SjL;/Aj- Cl)+A2(l:Si2SjL;/Aj- C2 )

+ l:Yj1(Sft/Af -fJf)+ l:Yj2(Sf21Af -fJf), (2.3)
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we may follow a procedure similar to that of Section I and obtain the optimality conditions:

I-A1SilS;/A~-A2Sj2S;/A~= 2(YilS~1 +Yj2S~2)/(AlLj)

r.SilSjLj/Aj-C1 :::;; 0 if A.1 50,

r.Sj2SjL;/Aj-C2 :::;; 0 ifA.2 50,

S~l/A~-u~ :::;; 0 ifYil 50,

S~2/A~-u~ :::;; 0 ifYj2 5 O.

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

Let the representative load intensity of the first loading system be denoted by P1 and
that of the second loading system by P2 == rp1' In the following we shall use the dimension
less variables:

aj = A/J/P1' Sil = Sil/P1' Sj2 = Sj2/(rP1)'

Sj = SJp, Ci = Cd(pu/), C2 = C2 /(rpul),

(J. = u./u,
I I (2.5)

where I, Pi , u are reference length, reference load intensity and reference stress, and p
denotes the unit load intensity. We may then, as in Section 1, convert the optimality
conditions (2.4aH2.4e) to these dimensionless variables.

In view of (2.4d, e),

ai ~ max{lsill, *d}/(Jj == a j. (2.6)

The bars of the truss may again be divided into two groups according to whether aj > iij
(group G*) or aj = iij (group G**). It then follows from (2.4d, e) and (2.4a) that

Yil = Yj2 = 0, A,lSilSj+A,2Sj2Sj = a~ > a~ for G*, (2.7a)

Yil > 0 or Yj2 > 0, A1SilSj+A2Sj2Sj < a~ = a~ for G**. (2.7b)

Optimization of the truss involves identifying the members of the two groups and determin
ing the values of A1 and A2 for each pair of prescribed values C1 and C2' In view ofthe second
equation (2.7a), the bars for which both SilSj and SilSj are negative must be in groups G**.
Members, however, for which at least one of these expressions is positive will be in G* or
G** according to whether A,lSilSi+A,2Sj2Sj-a~is positive or negative. Thus, the groups are
completely specified when A,1 and A,2 are known. The procedure of furnishing an optimal
design is exactly the same as in Section 1 as shown in the example below.

Example

The layout of the truss and the given alternative loading systems of load intensity Pi , P2
are shown in Fig. 2(a). The dummy load for compliance constraints is assumed to be a
downward vertical load of unit intensity p that is applied to joint 1. Thus, C1 and C2 are
respectively the products of Young's modulus and the downward deflections of joint 1
caused by the first and the second loading systems.

Assuming (Jj = 1 for all bars and P1 = P2, we obtain Table 3.
In the A,1 , A,2-plane, the inequality in (2.7a) defines a half-plane the points of which corre

spond to values of A,1' A,2 for which bar i belongs to group G*. In Fig. 2(b), the boundaries of
these half-planes are marked by the appropriate bar numbers written on the side of the
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TABLB 3. DATA FOR I!XAMPLE TRUSS

2 3 4 5 6

II 2 2 ../5 ../5 ../5 I
Sit -2 -2 ;';5 2;';5 -;';5 2
Sl2 -../5 -../5 2 7/2 -5/2 0
Si -2 -2 ../5 ../5 0 0
a. ../5 ../5 ;';5 2.,/5 5/2 2

boundaries that correspond to group G*; the bars S,6 with SitSj = Sj2Sj = 0 can never be
in group G*. The boundaries divide the AI' A2-plane into four regions marked by
R 1 , R 2 ••• , R4 • For each region, the bars ofgroups G* and G** can be read off the figure as
shown in Table 4.

TABLE 4. GROUPS G* AND 0** FOR VARIOUS REGIONS

Region R1

Bars in G*
Bars in GU 1-6

3
1,2,4-6

4
1-3,5,6

1-4
5,6

Summation over the bars in group G* and G** will again be denoted by 1:* and 1:**,
respectively. With

(2.8)

the mapping of the AI' Az-plane into the C1, Cz-plane is defined by

(j = 1,2). (2.9)

The Cl' cz-plane is shown in Fig. 2(c) where notations similar to those of the example in
Section I are used; for instance, point A' and point R'l correspond to point A and region R},
respectively. The semi-infinite positive AI-axis in the AI' A2-plane is mapped onto the line
segments O'B'C'D' and the A2-axis onto O'F'G'. [Note that D' and G' are shown on insert of
Fig. 2(c).] For the region R2 with only bar 3 in G*, from (2.9) we have

cj = K 1 +S.j(S)/(SAI +2.j(S».2)t, C2 = K 2 +S.j(5)/(5A 1 +2.j(5)A2)t

where K 1 and K 2 denote the constants of the second summations in (2.9). Accordingly,
the mapping depends only on the values of SAl + 2.j(S)A2 • For a point M on the line seg
ment AB of the A} , A2-plane with the abscissa A\M), all points of the line EM with the equa
tion SA} +2.j(5)A2 = SA\M) are mapped onto the same point in the C}, c2-plane as the
point M. Accordingly, the region R2 is mapped onto the line segment A'B' in the c1 , c2-plane.

Let the prescribed values Cl , C2 be represented again by a point Q' in the Cl , c2-plane,
and the Cl' C2-ValUes ofthe corresponding optimal truss by a point Q'. Following the similar
argument as in the example of Section 1, we conclude that Q' == Q' if Q' is in one of the four
regions R'l ... , R4. If Q' is just above the line segments D'C'B'O', then Al > 0, ,1,2 = 0,
c l = C l , c2 < Cz, and the corresponding Q' is the vertical projection of Q' on D'e'HO';
for instance, in Fig. 2(c), Q'I corresponds to Q'I' Similarly, if Q' is just to the right of the line
segment G'F'O', then Al = 0, ,1,2 > 0, i\ < C" C2 = C2, and the corresponding Q' is the
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horizontal projection of Q' on G'F'O'; for instance, in Fig. 2(c), Qz corresponds to Qz.
Finally if Q' is above and to the right of R'I' then Q' == Ri since Al = A2 = 0 and i\ < cl'

C2 < C2'

When the region to which the point Q' belongs is indicated in this manner for prescribed
Q', the members of the groups G* and G** are readily identified from Table 4. The values
AI' A2 and then the cross-sectional area aj of the optimal truss can be calculated from (2.9)
and (2.7) in exactly the same manner as in Section 1.

3. CONCLUDING REMARK

In the form in which it has been presented, the method of structural optimization of
trusses discussed above applies only to statically determinate trusses. Martin [4J has
however been successful in applying a modification of the method to statically indeterminate
beams. A similar modification for use with statically indeterminate trusses appears feasible
and will form the subject of a follow-up paper.
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AficrplucT-B pa60Te 06c~CTCli pac'feT Ha MHHHMyM seca CTaTH'fCCKH onpe,AeJleHKol ynpyrol cPePMbI,
XOTOplUI,AOJIlCIIa y,AOBJIeTSOpllTb OranH'fC'fH'fO CBJl3ell Tax Hanpll:lKeHHl, KaK H,A*PM~, no,A BJIHlIHHeM
OAHol CHCTeMbl R 60nee CHCTeM Harpy3KR. HcnOJIb3YCTCJI B pa60Te YCTYIJ1IIIBOCTb JIBJIlIIOIltellCJI
BupTyaJIbHOI pa60Tol cnCQJJ4IR'fecKHX 41HKTHBHbIX HarpY30K Ha ncpeMCII(CHRJIX, Bbl31lllIfHb1X
,ACICTBRTeJIbHOI HarpY3Kol. B Ka'lCC1'BC npRMCHCHRlI c.AHHH'fHol 41RKTHBHol Ha£PY3KR, TaXlUI
yCTyn'fHBOCTb nJ)C.ACTaBJIJICT nepeMCIltCHRC TO'IKR ee npBJIOlKCHRlI no HanpaBJICHHIO 41HlITRBHoi!: RarpY3KR,
Bbl3BllHRO .aCICTBHTeJlbHblMR Harpy3KaMH.

OrpaHH'fCHRlI Hanpll:lKeHHl, paCCMaTPHBllCMblC B pa6oTe, onpe,AeJIlIlOT BCpXHHI Dpe,AeJI a6coJIlOTHoi
BeJIH1DIRbI ocesoro HanplI:IKeHRll BKalI:.AOM CTePlKHC, KOTOpoe HC lIBJIJICTCJI O.AHHaKOBbIM .AJIJI BCeX CTePlCJIeI.

qllCTH 1 H 2, COOTBCTCTBCHRO, ODpe,ACJImOT C.AY'f8H ,IlIIYX yC'J'YlI'fllBlol CBJI3eI .AJIJI npocTOro COCTOllHHlI
HarpY3KH H o.AHHaPHol yCTYfi'lHBOI CBlI3H ,IlIIyx lUIbTePHaTRBHbIX COCTOJIHHI HarPY3KR. AmI 3THX ,IlIIYX
CJI)"l8CB MaTeMaTRYecKlUI npOOJICMa OJ:a3blBllCTCJI oAHol H3 38.A8'1 BbIII)'KJIoro nporpaMMHpOBllHRlI.
06a CJI)"l8l1 OIlRCblBlUOTCJl aHaJIHTR'fCCKH TalC ,ABJICKO, KaK 3TO JIBltRCTCJI B03MOlKHblM,~c 'IeM 6y,llYT
HCUOJIb3OBllHbI 'lHCJlCBHIoIC J)8C'ICTIoI, 'IT06w • JlC3YJIbTaTC DOJIY'fllTb 41H3R'fCCKH1I13rJUl,ll;, KOTOpbll: MOlKCT
OXa38TbCJI nOJIC3HbIM npH o6cYlI:J,lcHHl6oJIee CJlOlCIIbIX 38.A8'1 OIlTllM8.lIH3lUUIJI KOHCTJ))'KJlHH.


